- 1. (a) For the following functions, write down suitable domains and their corresponding ranges.
 - (b) Find also the inverse of each function, again stating a suitable domain and range for each.
 - (i) $f(x) = \frac{3}{(x+1)^2}$
- (ii) $f(x) = \sqrt{2x 1}$
- The function $f(x) = 1 + \sin 2x$ is defined such that it has an inverse. 2.
 - (a) Sketch y = f(x), and the inverse function $y = f^{-1}(x)$ on separate diagrams.
 - (b) State suitable domains and ranges for both functions.
 - (c) Find a formula for $f^{-1}(x)$, the inverse of $f(x) = 1 + \sin 2x$.
- A function $f(x) = \frac{x^3 + x}{x^2}$ is defined on [-3,3]. 3.
 - (a) Identify all local extrema and determine their nature.
 - (b) Identify any global maxima and minima if different from (a).
- Repeat question 3. for $f(x) = |x^2 + x 6|$, defined on the domain [-4, 2). 4.
- 5. The graph of y = f(x) is shown. Sketch the graphs of the following related functions.

(a)
$$y = 3f(x)$$
 (b) $y = 2 - f(x)$

(c)
$$y = f(4-x)$$
 (d) $y = |f(x)|$

(d)
$$y = |f(x)|$$

(e)
$$y = 2f(-2x+1) - 3$$

(f)
$$y = f^{-1}(x)$$
.

Determine whether the following functions are odd, even or neither. 6. State what significance this has for the graph of each function.

(a)
$$f(x) = x + 2\sin x$$

(b)
$$f(x) = 3x^2 - 3 + \frac{4^4}{x^4}$$

(c)
$$f(x) = 2x^3 - 3x^2 + x$$

(d)
$$f(x) = \frac{2}{x^3} - \frac{4}{x}$$

7. Sketch graphs of the following functions. Make sure you show all the necessary justification for asymptotes, stationary points, etc.

(a)
$$y = \frac{2x+5}{x-3}$$

(b)
$$y = \frac{x^2}{x^2 + x - 2}$$

(a)
$$y = \frac{2x+5}{x-3}$$
 (b) $y = \frac{x^2}{x^2+x-2}$ (c) $y = \frac{x^2-4x+1}{x-4}$